Table of Contents

Case Reports /Review Articles

An Unusual Breast Malignancy ... 07

Nuchal Fibroma: A rare entity of neck masses ... 10
N. Alsaleh, H. Amanguno

Epinephrine–secreting large incidental pheochromocytoma in a normotensive male with stormy intraoperative hemodynamics....... 13
O. Nazir, T. Sharma, M. Maqsood, A. Khatuja, R. Misra

Everolimus induced Pneumonitis.. 18
Q. Badar, N. Masood, A.-N. Abbasi

Primary Mantle Cell Lymphoma of Appendix ... 25
VL Gaopande, SD Deshmukh, VC Shinde

A Rare Variant of Multiple Myeloma: Non–Secretory Myeloma with diffuse Osteolytic Lesions.. 28
S. Sultan, S.M. Irfan

Pain and Cancer: A systematic review ... 32

Original Articles

Tumor Thickness: A predictor of nodal disease in early squamous cell carcinomas of buccal mucosa ... 38
G. Deshpande, S. Das

Hyofractionated Simultaneous Integrated Boost (SIB) versus Conventional Fractionation in Localized Prostate Cancer: A Randomized Pilot Study .. 44

Quantitative evaluation of the dosimetric effects of balloon deformation and source position in high–dose rate mammosite breast brachytherapy ... 54
I. Ali, S. Negusse, S. Ahmad, O. Algan

Spectrum of Ovarian Tumors: Histopathological study of 218 cases .. 64
N.A. Mansoor, H.S. Jezan

Rare Chromosome Structural Aberration Characterizing Oncology Malignancy ... 71
A. Movafagh, A. Sayad, M. Hashemi, H. Darvish, D. Zare–Abdollahi, B. Emamalizadeh, F. Shahvaisizadeh, N. Mansouri, S. A. Mortazavi–Tabatabaei

Infectious complications after allogeneic bone marrow transplantation: Sheikhha Badryia Center, Kuwait 79
S. AlShemmari, S. Refaat, A. A. Abdullah, M.A. Abul

Cancer News and Scientific Events in the Arab Region

• News Notes .. 87
• Advertisements ... 90
• Scientific events in the GCC and the Arab World for 2015 91
Hypofractionated Simultaneous Integrated Boost (SIB) versus Conventional Fractionation in Localized Prostate Cancer: A Randomized Pilot Study

K. El–Ghamrawi¹, M. El–Haddad¹, S. Hanna², A. Ali¹, M. Kamal³

¹Department of Clinical Oncology, Cairo University Hospital, Egypt. ²Department of Radiology, Cairo University Hospital, Egypt. ³Radiation Physics unit, Cairo University Hospital, Egypt

Abstract

Purpose: Radical prostatectomy or radiotherapy has comparable results in the treatment of localized prostate cancer. High dose external irradiation entails a prolonged 7–8 weeks of treatment with significant inconvenience to elderly patients. Hypofractionated regimen in prostate cancer depends on the distinctive radiobiological properties of prostate cancer cells; their relative low alpha beta ratio compared to that for late–reacting rectal tissue allows for significant dose escalation per fraction without expected increase in late normal tissue reaction.

Patients and Materials

Between July 2012 and December 2013, twenty patients were blindly randomized into two groups. The planning target volume in the study group received 65Gy to 67.5Gy/25 fractions over 5 weeks. The patients in the control arm received 74Gy to 78Gy in 2Gy/fraction. Cost–benefit was evaluated for both regimens.

Results

Both groups were comparable regarding risk factors, with no significant statistical differences. Four patients in the study group developed grade 2 urinary toxicity and one patient had grade 3 during treatment. At six months no patient had urinary symptoms. In the control arm 4 patients have grade 2 toxicity during treatment which disappeared at six months. The two groups showed no statistical difference in the mean quality of life. Serum PSA reached a nadir value of 0.02 and 0.04 in the study and control groups respectively at 3 month post–treatment. The cost of treatment for the study group was 25000 L.E. per patient compared to 40000 L.E. in the control group. The hypofractionated group consumed 31138 MU compared to 45611 MU for the control group with a p-value of 0.015.

Conclusion

Hypofractionated IMRT with concomitant boost for localized cancer prostate is a feasible option with lesser cost and comparable toxicities. Longer follow–up is required to assess the late effects before recommending it as a standard of care.

Keywords

IMRT, prostate cancer, hypofractionation, local tumour control
late 1960s for the treatment of prostate cancer. With the development and integration of modern imaging modalities, treatment planning systems and modern treatment techniques, more accurate target definition was achieved, allowing for more normal tissue sparing and dose escalation, thus ultimately improving outcome (2). Compared with the conventional three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT) offers many potential benefits. It can improve dose conformity around the target volume, thereby increasing the therapeutic ratio which can permit tumor dose escalation, resulting in improved local control and reduced risk of treatment related complications (3). Another advantage of IMRT is its ability to generate dose distributions of specific levels of non-uniformity in target volumes. Accordingly, different dose levels can be prescribed to different targets or different regions of the target. An immediate application of this characteristic of IMRT is to plan and treat the boost dose together with the large field prescription dose. Simultaneous treatment of multiple targets with different prescribed doses is called the simultaneous integrated boost (SIB) technique. This permits delivery of graded dose levels to tumor-bearing tissues and tissues at risk of subclinical tumor spread, and spares normal tissues to the greatest extent possible. The SIB–IMRT strategy not only produces superior dose distributions but also is an easier, more efficient, and perhaps less error–prone way of planning and delivering IMRT because it involves the use of the same plan for the entire course of treatment (4). The aim of this study is to assess the feasibility of applying hypofractionated simultaneous integrated boost in intensity modulated radiation therapy for the treatment of localized prostate cancer and comparing it to conventionally fractionated IMRT, with regards to its effect on treatment toxicity, as well as impact on treatment delivery, patient convenience and quality of life and its overall cost benefit.

Patient Characteristics

Twenty males with localized prostate cancer were recruited for our study, the Inclusion criteria were: age between 40–80 years, performance Status (WHO) 0–2, pathologically proven prostatic adenocarcinoma, Gleason’s score 2–10, baseline serum prostatic antigen >4 ng/dl, TNM Stage T1a–T3a, N0, M0, patient written informed consent and adherence to treatment, patient weight ≤140kg, adequate hematological, renal and hepatic profiles. The exclusion criteria were as follows: extra-prostatic soft tissue extension invading adjacent structures (T3b/T4), lymph node metastasis (LN+ve), bony metastasis (M1), previous pelvic surgery or radiation, concomitant neoplastic disease or previous anti-neoplastic non-hormonal therapy, urinary bladder stones, performance Status (WHO) 3–4, patient refusing treatment (Patients’ Characteristics are shown in (Table 1).

Treatment

Hormonal therapy

The patient starts 2–6 months of neoadjuvant combined hormonal treatment (LHRH agonist and an antiandrogen), followed with concomitant hormonal treatment during the radiation course for intermediate and high risk groups then adjuvant hormonal for 2–3 years in the high risk group (Roach, et al., 2000).

Radiotherapy

Simulation was done with an empty rectum and a half–full bladder in the supine position with the arms in the supine position. CT cuts were taken at 2.5mm intervals starting at the level of the 4th lumbar vertebrae at 5cm below the ischial tuberosity. Pelvic MRI was done in same setup and preparation condition for accurate CT–MRI fusion was done (5), and images were transferred to the Eclipse treatment
Table 1: Patients’ Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Experimental</th>
<th>Control</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>%</td>
<td>Number</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (±SD)</td>
<td>70.2 (±3.99)</td>
<td>–</td>
<td>64 (±5.0)</td>
</tr>
<tr>
<td>Median (Range)</td>
<td>69.5 (65–77)</td>
<td>–</td>
<td>65 (53–70)</td>
</tr>
<tr>
<td>PS</td>
<td>0</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Gleason</td>
<td>6</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>T–Stage</td>
<td>1c</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2a</td>
<td>3</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>2b</td>
<td>3</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>2c</td>
<td>3</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Risk Group</td>
<td>Low</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Intermediate</td>
<td>4</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>High</td>
<td>4</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>SV Risk</td>
<td>Mean (±SD)</td>
<td>25.4(±22.0)</td>
<td>–</td>
</tr>
<tr>
<td>Median (range)</td>
<td>17 (6–73)</td>
<td>–</td>
<td>41 (8–86)</td>
</tr>
<tr>
<td>>15%</td>
<td>5</td>
<td>50</td>
<td>9</td>
</tr>
<tr>
<td>LN Risk</td>
<td>Mean (±SD)</td>
<td>34.5 (±29.6)</td>
<td>–</td>
</tr>
<tr>
<td>Median (range)</td>
<td>25(8–100)</td>
<td>–</td>
<td>53(12–130)</td>
</tr>
<tr>
<td>>15%</td>
<td>6</td>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td>HRT Duration (months)*</td>
<td>Average</td>
<td>6.1 (±10.1)</td>
<td>–</td>
</tr>
<tr>
<td>Median</td>
<td>3 (0–36)</td>
<td>–</td>
<td>3 (0–6)</td>
</tr>
</tbody>
</table>

*HRT: Hormonal Therapy, SV: seminal vesicle, LN: lymph nodes, PS: performance status
planning system (version 8.6). Fusion of the MRI and CT images were accomplished using spatial software by the TPS depending on bony/soft tissue anatomy. Clinical target volume included the prostate, seminal vesicle, and pelvic lymph nodes. MRI T–2 weighted images were used for guiding prostatic delineation from base to apex (6). In cases where MRI imaging was not feasible the apex was identified as the hourglass or slit shape that results from the in-bowing of the levatorani, about 1cm above the penile bulb (7). PTV included the CTV with 10mm margin in all directions, except posteriorly 5mm (8). Pelvic lymph node and risk structures delineation followed the RTOG atlas guidelines (www.RTOG.org). Median dose in the hypofractionation arm was 65Gy to 67.5Gy in 25 fractions (2.6–2.7Gy per fraction / 5 times per week / over 5 weeks) and in the control arm 74Gy to 78Gy in 37 fractions (2Gy per fraction / 5 times per week / over 7.5 weeks). Pelvic lymph node received only 45–50Gy with 1.8–2Gy per fraction in both arms. Planning was performed using Eclipse (Varian Medical Systems, California, USA) treatment planning system (version 8.6) with a pencil beam dose calculation algorithm and a 2.5mm grid size. Nine fields IMRT plan with gantry angles 180º, 220º, 260º, 300º, 340º, 20º, 60º, 100º and 140º was used. Two separate plans were done for the sequential boost group.

Statistical Methods

All data were tabulated and statistically studied by descriptive analysis in relation to different prognostic factors. Comparison between the two groups was done using Equivalent 2–tailed Student t–test. Differences will be considered significant if the p–value is <0.05. All statistical calculations, data management and analysis were performed using the SPSS (Statistical Package for the Social Science; SPSS Inc., Chicago, IL, USA) software version 17.
Results

Patients were evenly distributed between the two arms of the study in terms of performance status, Gleason’s score, T–stage, baseline PSA, seminal vesicle and lymph node metastatic risk and hormonal treatment duration. However, there was a statistically significant higher mean age group in the experimental arm 70.2 years compared to 64 years in the the control arm (p=0.009).

Dosimetric outcome

All plan parameters for PTV coverage, minimum, maximum, conformity and homogeneity indices were almost identical for both groups (Table 2).

Treatment related toxicity

Baseline obstructive or irritative urinary symptoms were found in 4 patients of each arm. During radiation 4 patients developed grade 2 toxicity in both arms, with one patient having grade 3 toxicity in the experimental arm. Symptoms subsided completely by the first month of follow–up. There was no statistical significance in the occurrence of urinary toxicities between the two arms either during treatment (p=0.689) or at 3 months follow–up (p=0.660) (Table 3).

No GI toxicity observed during treatment or on follow–up in the experimental arm with only one patient developing grade 2 diarrhea in the control arm. Erectile dysfunction was attributed to the use of neoadjuvant hormonal treatment.

Quality of Life

Quality of life assessment was done using patient–based RTOG questionnaire. The quality of life questionnaires QLQ c–30 for patient general health and QLQ c–25 for prostate cancer assessment were both used. The combined scores of both questionnaires were expressed as a percentage for comparative analysis. The 2 groups showed no statistically significant difference in mean quality of life score, with an observed pattern of decrease score reaching its lowest at the end of treatment followed by an improvement of QOL achieving pre–treatment levels by 6 months follow–up (Figure 1).

PSA Nadir

There was no statistical significant difference in PSA between the 2 study groups with a decrease in value from baseline assessment to 6 months follow–up, (Figure 2).

Cost estimate comparison

With regards to linear machine usage, hypofractionation consumes a statistically lower mean value of total monitor units at 31138 MU compared to 45691 MU with conventionally fractionated

<table>
<thead>
<tr>
<th>GUT Toxicity</th>
<th>Experimental</th>
<th>Control</th>
<th>p–value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Present=4 (40%)</td>
<td>Present=4 (40%)</td>
<td>1.0</td>
</tr>
<tr>
<td>During Treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onset (week)</td>
<td>W3: 2pt. (43%)</td>
<td>W2: 1pt. (20%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W4:3pt. (57%)</td>
<td>W4:2pt. (40%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W5:2pt. (40%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>G2=4 (40%)</td>
<td>G1=1 (10%)</td>
<td>0.689</td>
</tr>
<tr>
<td></td>
<td>G3=1 (10%)</td>
<td>G2=4 (40%)</td>
<td></td>
</tr>
<tr>
<td>3m Follow–Up</td>
<td>G1=3 (30%)</td>
<td>G1=4 (40%)</td>
<td>0.660</td>
</tr>
<tr>
<td>6m Follow–Up</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 : Genito–urinary toxicity profile for the two study groups
As for the financial cost of treatment for the patient, hypofractionation is much more cost-effective, since the price of IMRT treatment is 5000LE per week in the private sector. Accordingly, a hypofractionated course of 5 weeks would cost 25000LE compared to 40000LE for an 8 week course with conventional fractionation.

Discussion

This work is an interim analysis of a prospective randomized clinical trial aimed at assessing the possibility of shortening the period of radiation treatment for localized prostate cancer by evaluating the acute toxicity, quality of life and cost/benefit of hypofractionation compared to conventional
fractionation. Many prostate cancer patients prefer radical prostatectomy over radiotherapy simply because of the long treatment duration of external beam radiotherapy. Hypofractionation schedule may be more convenient for our patients specially the older ones, as well as to reduce the load in our busy department.

In addition, biological models suggested that prostate cancer tumor cells may have lower α/β ratio than the surrounding normal tissues, thus increasing dose per fraction can improve the therapeutic ratio \(^9\). Extensive evidence from animal studies suggests that for late rectal sequelae, α/β ratio is 4Gy i.e., it is higher than most other late sequelae. This higher value for late rectal damage is supported by clinical results that suggest that much late rectal injury is actually consequential of early effects, and thus a high α/β ratio for late rectal damage is not unreasonable \(^10\). If the α/β ratio for prostate cancer is less than that for the surrounding late–responding normal tissue then an increase in dose per fraction would increase tumor control more than the increase in late complication, and so hypofractionation at the appropriate dose, would yield an improved

<table>
<thead>
<tr>
<th>Organ</th>
<th>Control Arm Constraint</th>
<th>Control Arm Objective</th>
<th>Experimental Arm Constraint</th>
<th>Experimental Arm Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectum</td>
<td>V75</td>
<td>$\leq 15%$</td>
<td>V68</td>
<td>$\leq 15%$</td>
</tr>
<tr>
<td></td>
<td>V70</td>
<td>$\leq 20%$</td>
<td>V64</td>
<td>$\leq 20%$</td>
</tr>
<tr>
<td></td>
<td>V65</td>
<td>$\leq 25%$</td>
<td>V59</td>
<td>$\leq 25%$</td>
</tr>
<tr>
<td></td>
<td>V60</td>
<td>$\leq 35%$</td>
<td>V55</td>
<td>$\leq 35%$</td>
</tr>
<tr>
<td></td>
<td>V50</td>
<td>$\leq 50%$</td>
<td>V45</td>
<td>$\leq 50%$</td>
</tr>
<tr>
<td>Bladder</td>
<td>V75</td>
<td>$\leq 25%$</td>
<td>V64</td>
<td>$\leq 25%$</td>
</tr>
<tr>
<td></td>
<td>V70</td>
<td>$\leq 35%$</td>
<td>V60</td>
<td>$\leq 35%$</td>
</tr>
<tr>
<td></td>
<td>V65</td>
<td>$\leq 50%$</td>
<td>V55</td>
<td>$\leq 50%$</td>
</tr>
<tr>
<td>Penile Bulb</td>
<td>D90</td>
<td>$\leq 50\text{Gy}$</td>
<td>D90</td>
<td>$\leq 44\text{Gy}$</td>
</tr>
<tr>
<td></td>
<td>D60</td>
<td>$\leq 70\text{Gy}$</td>
<td>D60</td>
<td>$\leq 61\text{Gy}$</td>
</tr>
<tr>
<td>Mean Dose</td>
<td></td>
<td>$\leq 50\text{Gy}$</td>
<td>Mean Dose</td>
<td>$\leq 44\text{Gy}$</td>
</tr>
<tr>
<td>Femoral Heads</td>
<td>Dmax</td>
<td>$\leq 50\text{Gy}$</td>
<td>Dmax</td>
<td>$\leq 44\text{Gy}$</td>
</tr>
<tr>
<td>Bowel Bag</td>
<td>V45</td>
<td>$\leq 195\text{cc}$</td>
<td>V40</td>
<td>$\leq 195\text{cc}$</td>
</tr>
</tbody>
</table>

Table 4: Total Monitor Units expenditure in the 2 study groups

<table>
<thead>
<tr>
<th>Total Monitor Units</th>
<th>Experimental</th>
<th>Control</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (±SD)</td>
<td>31138 (±10057)</td>
<td>45691 (±13788)</td>
<td>0.015</td>
</tr>
<tr>
<td>Median (Range)</td>
<td>31128 (18700–52170)</td>
<td>49627 (22100–62159)</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Organs at risk—volume constraints
therapeutic ratio \(^{(11)}\). However, if the \(\alpha/\beta\) ratio for prostate cancer is indeed similar or greater than that of the surrounding late-responding normal tissue, hypofractionation would produce an increase in tumor control less than that of late sequelae, and therefore yield a therapeutic ratio which is worse or comparable to conventional fractionation. This is in addition to patient convenience and financial advantages, with the potential for biologically based individualized treatments expected from using hypofractionated treatment \(^{(12)}\).

The dose selection for conventional fractionation i.e. 78Gy/34 fractions at 2Gy per fraction over 8 weeks, in the control arm was chosen based on the results of several dose escalation trials that proved improved b–DFS with doses \(\geq 76\text{Gy}\) in the intermediate and high risk group \(^{(13–15)}\).

The doses selected in the experimental arm were derived using Withers’ isoeffect formula for achieving biological equivalence with conventional fractionation \(^{(16)}\). The reported \(\alpha/\beta\) ratio of prostate cancer varied between 1–4Gy, according to various authors \(^{(17)}\). In the present work, an intermediate value of 3Gy was used despite the fact that a number of other studies used an \(\alpha\beta\) ratio of 1.5Gy. A more conservative value was used in this study to account for the heterogeneous nature of prostate cancer. Thus, the prescribed dose in both arms would be biologically equivalent and so any differences in outcome would be attributed to the treatment method.

The doses–volume constraints for the organs at risk in the control arm are based upon the QUANTEC model for normal tissue tolerance \(^{(18)}\). The doses–volume constraints for the organs at risk in the experimental arm were derived using Withers’ isoeffect formula for achieving biological equivalence with conventional fractionation (Table 5). The \(\alpha/\beta\) ratios used according to biological models were as follows: rectum 4Gy (higher than that of the prostate so as to assume benefit of hypofractionation), bladder, penile bulb, femoral heads and bowel bag 3Gy \(^{(10)}\). The acute genito–urinary and rectal toxicity for various hypofractionation regimens with GU toxicity \(\geq\) grade 2 ranging between 5–47% and GI toxicity \(\geq\) grade 2 ranging between 8–36%, (Tables 3). These results are comparable to the current study with GU toxicity \(\geq\) grade 2 at 50% and GI toxicity \(\geq\) grade 2 at 0% in the hypofractionation arm. These acute toxicities in the experimental arm were comparable to those in the control arm with GU toxicity \(\geq\) grade 2 at 40% and GI toxicity \(\geq\) grade 2 at 10%, with no statistical significance between them (\(p=0.689\)) (Table 6), although, there was one patient who developed grade 3 GU toxicity which was resolved by medical treatment. It is worth mentioning that GU toxicity appeared one week earlier in the hypofractionation arm.

In the current study it was observed that patients with pre–existing genito–urinary symptoms before treatment experienced more GU toxicity, 4 out of 5

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient N#</th>
<th>Dose/Fraction N#/Dose per Fraction</th>
<th>AcuteToxicity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Urinary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rectal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Norkus, et al., 2009</td>
<td>47</td>
<td>57Gy/19F/3Gy</td>
<td>–</td>
</tr>
<tr>
<td>Soete, et al., 2006</td>
<td>36</td>
<td>56Gy/16F/3.5Gy</td>
<td>–</td>
</tr>
<tr>
<td>Ritter, et al., 2009</td>
<td>100</td>
<td>64.7Gy/22F/2.9Gy</td>
<td>–</td>
</tr>
<tr>
<td>Menkarios, et al., 2011</td>
<td>80</td>
<td>45Gy/9F/5Gy</td>
<td>29</td>
</tr>
<tr>
<td>Salinas, et al., 2012</td>
<td>36</td>
<td>70Gy/28F/2.5Gy</td>
<td>58</td>
</tr>
</tbody>
</table>

Table 6: Acute toxicity rates for various hypofractionation trials
patients who developed toxicity ≥ grade 2 have pre-
treatment urinary symptoms, a finding also verified
by Pollack, et al. (19). This confirms the importance
of treating any urinary symptoms before starting
external beam radiotherapy.

The majority of patients in both groups have
erectile dysfunction before starting treatment,
probably due to neoadjuvant ADT. Therefore, it was
not possible to evaluate the effect of radiation on
erectile function during the short observation time. In
cases where they received radiation therapy alone,
the literature demonstrated that erectile dysfunction
can be observed in 40–60% of patients after 6 years
follow-up (20).

The patients’ Quality of Life with radiation treatment
was comparable to that observed in literature. Salinas, et al used a similar QOL assessment method
using the QOL c–30, c–25 and IPSS score. C–30
reflected mild transient worsening and returns to
baseline at 3 months except for physical functioning.
C–25 demonstrated a decline of sexual activity and
transient worsening of urinary and bowel symptoms
with treatment, which improved by 3 months and
remained mild, most probably due to continued
ADT. Katz, et al. demonstrated that Mean Expanded
Prostate Cancer Index Composite (EPIC) score for
urinary and bowel QOL declined at 1 month post-
treatment and returned to baseline by 2 years.
Mean EPIC sexual QOL declined by 23% at 1 month
(21). Jereczek–Fossa, et al. showed a significant
deterioration in erectile function on the International
Index of Erectile Function—5 with time only in patients
without androgen deprivation. No change with time
was observed in urinary symptom—related quality
of life on the QLQ c–25 or International Prostate
Symptom Score. Slight deterioration in QLQ c–25
bowel symptom related quality of life was observed.
Overall QLQ c–30 Global Health Status improved
with time (22). Similar observations were recorded in
the present work with no difference between the two
arms. This study has a few limitations which may
have hindered result interpretations and conclusions
drawn. First of all, the small sample size attributed
to the low flow rate of localized prostate cancer
cases to our institution and the high cost of the
procedure decreased the statistical power of the
study. Secondly, the unavailability of more advanced
image-guidance technology such as cone–beam
CT or fiducial markers impeded more accurate
treatment delivery and result interpretation, such as
systemic and random error of treatment isocenter
movement. Lastly, the impact of hypofractionation
on biochemical disease—free and overall survival
together with late treatment toxicity could not be
assessed due to the short follow—up period.

Conclusions

1. Hypofractionation with simultaneous
integrated boost yielded similar nadir in PSA
value in both arms, denoting the efficacy
of this hypofractionation regimen.

2. Hypofractionated radiotherapy for prostate
cancer is feasible and improves patient’s
quality of life with the same treatment—related
toxicity.

References

1. Peschel, R.E. and J.W. Colberg, Surgery, brachytherapy,
and external—beam radiotherapy for early prostate cancer.

2. Zelefsky, M.J. and S.A. Leibel, Comparing contemporary
surgery to external—beam radiotherapy for clinically
3363–4.

treatment planning protocol for prostate treatments using
intensity modulated radiotherapy. J Appl Clin Med Phys,

4. Mohan, R., et al., Radiobiological considerations in the
design of fractionation strategies for intensity—modulated
radiation therapy of head and neck cancers. Int J Radiat

5. Bollet, M.A., et al., Can digitally reconstructed radiographs
(DRRS) replace simulation films in prostate cancer
conformal radiotherapy? Int J Radiat Oncol Biol Phys,

6. Teh, B.S., et al., Intensity modulated radiotherapy (IMRT)
decreases treatment—related morbidity and potentially
437–51.

for radiation therapy: a Radiation Therapy Oncology Group

8. Boehmer, D., Combined radiotherapy and hormonal
therapy in the treatment of prostate cancer. Front Radiat

